§2. One-sided ideals

One sided ideals are messier than two-sided ideals, primarily because the product of two one-sided ideals need not be a one-sided ideal. The most useful positive fact about onesided ideals is

2.1 (Associator Lemma). If B is a one-sided ideal of Λ then any associator with a factor from B falls back in B:

$[A,B,A] \subset B$.

Proof. To be definite, let us suppose B is a left ideal. Then by the alternating nature of associators we can move all multiplications by A to the left of B, whence they send B back into itself: $[A,B,A] = -[A,A,B] \subset A(AB) - (AA)B \subset AB \subset B$ if B is a left ideal. \square

Using this we can quickly find an expression for the two-sided ideal generated by a one-sided ideal; just as in the associative case.

2.2 (Hull Lemma). The two-sided ideal generated by a left ideal B is the hull $H(B) = B\hat{A}$.

Proof. Any ideal containing B must also contain BA; conversely, this space already constitutes an ideal since $\Lambda(B\hat{A})$ = $(AB)\hat{A} - [A,B,\hat{A}] \subset B\hat{A} + [A,B,A]$ and $(B\hat{A})\Lambda = [B,\hat{A},\Lambda] + B(\hat{A}A)$ $\subset [B,A,A] + BA$, where we just saw $[A,B,A] \subset B \subset B\hat{A}$.

Just as the $\underline{\text{hull}}$ H(B) is the smallest ideal containing B, so the $\underline{\text{kernel}}$ K(B) is the largest ideal contained in B. Again we have the expected characterization

2.3 (Kernel Lemma). If B is a left ideal, the largest ideal contained in B is the kernel $K(B) = \{b \in B | bA \subset B\}; \ \emptyset$

Proof. Certainly if b belongs to an ideal K contained in B then bA C K C B. Conversely, the above set forms an ideal: it is a left ideal since (ab) A = [a,b,A] + a(bA)

C B + aB (Associator Lemma) C B if B is left, and also ab € AB C B; similarly it is a right ideal since (ba) A =

[b,a,A] + b(aA) C B + bA (Associator Lemma) C B by choice of the contained of the contained are also contained in the contained in

One general method of putting two one-sided ideals together to get a new one (besides sums and intersections) is transportation. If S is a set and B a subspace the <u>left transporter of</u> S into B is

$$L(S,B) = \{x \in A | L_x(S) \subset B\}$$
.

There is always confusion with transporters as to which carries what into whom, and on what side; the notation is designed to indicate S is carried into B from the left. (One could also write $R_S^{-1}(B) = \{x | R_S(x) \subset B\}$, the set of elements which are carried by S into B). Similarly we have a right transporter of S into B

$$R(S,B) = \{x \in A | R_X(S) \subseteq B\}$$
.

In case B = 0 these reduce to the <u>left</u> and <u>right</u> <u>annihilators</u>

$$Ann_L(S) = L(S,0) = [x|xS = 0]$$

$$Ann_{R}(S) = R(S,0) = \{x | Sx = 0\}$$

which kill S from the left and right respectively.

2.4 (Transportation Lemma). If B is a left ideal and D a two-sided ideal in A, then R(B,D) is a right ideal and R(D,B) is a left ideal. If B is a right and D a two-sided ideal then L(B,D) is a left ideal and L(D,B) is a right ideal.

Proof. We just prove the case when B is a left ideal. We observe

$$B(xa) = (Bx)a - [B,x,a]$$

 $D(ax) = (Da)x - [D,a,x]$

If $x \in R(B,D)$ then in the first relation $(Bx)a \subset Da \subset D$ (D is right) and $[B,x,a] = [a,B,x] \subset (aB)x - a(Bx) \subset Bx - aD$ $(B \text{ is left}) \subset D$ (D is left too). This shows xa lies in R(B,D) if $x \in R(D,B)$ we use the second relation to see $D(ax) \subset B$: $(Da)x \subset Dx \subset B$ since D is right, $[D,a,x] = -[a,D,x] = a(Dx) - (aD)x \subset aB - Dx$ (since D is left) $\subset B$ (since B is left). Thus ax lies in R(B,D), and the latter is a left ideal. \square

It is too confusing to remember how left and right get snarled up in transportation. Just note that for a <u>left</u> ideal B only <u>right</u> transporters R(,) give rise to one-sided ideals, and that, like Hom (,), the functor R(,) is "covariant" in the second variable but "contravariant" in the first (in the sense

that a left ideal B gets converted into a right ideal R(B,D)).

Taking D=0 , we see that for annihilators everything is backwards

2.5 (Annihilator Lemma). If B is a left ideal its right annihilator $\mathrm{Ann}_{\mathrm{R}}(\mathrm{B}) = \mathrm{R}(\mathrm{B},0)$ is a right ideal. If B is a right ideal its left annihilator $\mathrm{Ann}_{\mathrm{L}}(\mathrm{B}) = \mathrm{L}(\mathrm{B},0)$ is a left ideal.

Thus annihilation is a contravariant process.

Exercise

- 2.1 Let B be an ideal in A, C = Be for e E N(B) a nuclear idempotent of B. Show C is a left ideal of A.
- 2.2 If B is a left ideal and C a right ideal, show $U_B^{\,\,C}$ is a left ideal. In particular, $U_B^{\,\,A}$ is a left ideal if B is.
- 2.3 If C is a left ideal of A, show for any subset $S \subset A$ that $L(\hat{S},C) = C \cap L(S,C)$ is a left ideal of A contained in C. If $S \subset C$ show L(S,C) is a left ideal of A containing C. If B, C are left ideals show $L(\hat{B},C)A \subset L(B,C)$.
- 2.4 Investigate why, if B is a left ideal and D a two-sided ideal, the <u>left</u> transporters L(B,D) and L(D,B) need't be one-sided ideals (as they would in the associative case).
- 2.5 If $n \in N(A)$ is nuclear, show Bn is a left ideal whenever B is.
- 2.6 The <u>middle annihilator</u> of a set S is $\operatorname{Ann_MS} = \{a \in A | U_g a = 0 \}$ for all $g \in S\}$. Show that if B is a left ideal then its middle annihilator $\operatorname{Ann_M}(B)$ is a right ideal. Show that $\operatorname{Ann_M}(B)$ is an ideal if B is.